

Korean Compact Infrared Space Telescope, MIRIS

D.-H. Lee¹, W.-S. Jeong¹, Y. Park¹, C.H. Ree¹, U.-W. Nam¹, B. Moon¹, S.-J. Park¹, S.-M. Cha¹, J. Pyo¹, J.-H. Park¹, K. Seon¹, D. Lee^{1,2}, S.-W. Rhee³, J.-O. Park³, H.M. Lee⁴, T. Matsumoto^{4,5}, W. Han¹ & S. Matsuura⁵,

¹ KASI, Korea, ² UST, Korea, ³ KARI, Korea, ⁴ ASIAA, Taiwan, ⁵ ISAS/JAXA, Japan

Contents

1. Satellites for Space Observation in Korea

MIRIS

- 2. Science & Technology Satellite III
- 3. Overview of MIRIS Project
- 4. Development of MIRIS
- 5. Environment Test
- 6. Calibration of MIRIS
- 7. Launch Campaign

Space Observation Program in Korea

Science & Technology Satellite Series

- 1st satellite: FIMS (Far-ultraviolet IMaging Spectrograph) (2003)
- 2nd Satellite: Observation of Space environment by Korean Launcher Naro
- 3rd Satellite: MIRIS (Multipurpose Infrared Imaging System)

Science & Technology Satellite III

Primary & Secondary Payloads

• MIRIS: first infrared camera in space

Specifications of MIRIS

Specifications of Space Observation Camera

- Wavelength: $0.9 \sim 2\mu m$ Aperture: 80 mm
- Detector FOV: 3.67° x 3.67° (Pixel : 51.6 arcsec)
 (c.f. Nyq. sampling @ 1.6µm = 4.1 arcsec)
 → limited by satellite stability
- Telescope & Sensor Temp.: 180K (Passive Cooling), 90K
- Filters (5 filters)
 - I (1.05 μ m), H (1.6 μ m), blank
 - Pa α (1.876µm), Pa α Cont

Scientific Objectives (1/3)

- Pa α Emission Line Survey : Galactic plane & WIM
- Origin of Warm Ionized Medium
 - Previous study of WIM: Photoionization model
 - Recent study of WIM from FIMS: dust scattering
 - Verification of the dust scattering theory
- Physical properties of interstellar turbulence
 - Structure of WIM
 - Comparison between Pa α (MIRIS) vs. H α

- Monte-Carlo simulation
 - Uniform dust distribution;
 E(B-V) = 0.1
 - Point source or Spherical H II region

Scientific Objectives (2/3)

Observation of Cosmic Infrared Background (CIB)

- CIB from POPIII stars
- Spectral peak of CIB

Large-scale structure of CIB from IRTS observation

Power spectrum, $\{qP(q)\}^{12}$ $[nW/m^2/sr]$

10

0.1

Parameter Space of CIB

Parameter space for MIRIS:

Scientific Objectives (3/3)

Zodiacal foreground

- Calibration purpose: 2 orbits /day
- Simultaneous observation of NEP & SEP in 1 orbit
- Monitoring of ZL in SEP and NEP: I & H bands
 - \rightarrow Revision of ZL Model & Removal of ZL component

Optomechanical Design

Optical Design

KΛ

Specifications						
Wavelength	0.9 – 2 um					
Aperture	80 mm					
Focal ratio	f/2					
Effective Focal Length	160 mm					
Pixel FOV	51.6″X 51.6″					
Detector FOV	3.67° x 3.67					
Telescope Temperature	< 200K					
Sensor/Filter Temperature	< 100K					
Specifications of sensor						
Sensor Model	Teledyne PICNIC (MCT)					
Pixel Size	40 um X 40 um					
Sensor Dimension	256 X 256					
Detecting Area	10.2 mm X 10.2 mm					

MIRIS

Mechanical & Thermal Analysis

 FEM analysis
 Safety factor > 4 in all directions

Stress in x direction

KΛ

Thermal analysis

• Worst hot & cold cases

12

Parts of MIRIS

Assembly of Dewar

SOC filter

SOC filter wheel

SOC dewar

Environmental Test – Passive Cooling

■ Confirmation of Passive Cooling : telescope < 200K

MIRIS

• Thermal cycles

Subsystem/ Equipment	Components (PCB)	Temperature Limits (Degree C)						
		Acceptance (Operating) Range		Qualification (Operating) Range		Survival (Non- Operating) Range		
		Min	Max	Min	Max	Min	Max	
	AO Telescope	-80	-30	-85	-25	-90	70	
MIRIS								
	Electronics	-20	30	-25	35	-30	85	

Environmental Test – Vibration/Shock, TID Test

- Vibration/Shock Profile : MIRIS and E-Box
- Total Integration Dose Test: radiation exposure ~30K rad

Calibration - Focus Test

Beam profile: Gaussian

• System MTF: ~30%

Calibration - Dark Test

Gaussian: readout noise
 Temperature variation: ~3K
 Increase of hot pixels: ~0.26%

- Increase of noise < 1 ADU
- No difference of dark on temperature variation

Calibration - Gain Estimation

Mean-Variance Test

$$\bullet \ \sigma_T = \sqrt{\sigma_p^2 + \sigma_r^2}$$

- Readout noise (σ_r) : Gaussian constant
- Photon noise (σ_p) : Poissonian increasing
- Mean-Variance
 - Readout noise ~ 45e⁻

Calibration - Flat Data

KΛ

Uniform source by integration sphere ■ Flat fielding for H & Pa bands • Deviation: reduction of 50%, 42% for H and Pa cont., respectively • Flatness < 1%Pa Cont. Н After Before After Before

MLI (Multi-Layer Insulation) Wrapping

Final Functional Test

- Imaging test : OK
- Operation of filter wheel : OK
- Cooler ON/OFF: OK
- SOH data: OK

KΛ

KV21-

MIRIS

First Images

M31

Orion Nebula

Rose Nebula

I